Management of HBV-HCV Co-infection:

Resolved and Unresolved Issues

Chun-Jen Liu (劉俊人), M.D., Ph.D.

Graduate Institute of Clinical Medicine, Hepatitis Research Center and
Department of Internal Medicine
National Taiwan University College of Medicine and Hospital
Taipei, Taiwan
Toward Elimination and Eradication of Viral Hepatitis B and C

-HBV vaccination program-
-Active treatment of HBV and HCV-

Chen DS. Fighting against viral hepatitis: Lessons from Taiwan
Hepatology 2011;54:381
Effects of Hepatitis B Vaccination on HBV-Related Diseases

• Acute / Fulminant Hepatitis
• Chronic Hepatitis
• Hepatocellular Carcinoma

* The First World Universal Hepatitis B Vaccination Program Was Launched in July 1984 in Taiwan
Chronicles for CHB/CHC Reimbursement Policies in Taiwan - Bureau of National Health Insurance (BNHI) -

- Oct. 2003
 - CHB: LAM (18 months), IFN (24 weeks).
 - CHC: IFN plus ribavirin (24 weeks)

- Oct. 2005:
 - CHB: Adefovir monotherapy for LAM-R rescue therapy
 - CHB: Peginterferon alfa-2a

- Oct. 2008:
 - CHB: Entecavir

- Nov. 2009:
 - CHB: NUCs for 3 years
 - CHC: Pegylated Interferon and ribavirin by RGT

- Jul. 2010:
 - CHB: Liver cirrhosis with HBV DNA >2000 IU/mL, long-term therapy
 - 2011: Tenofovir
In total, around 100,000 CHB and 60,000 CHC cases treated in the last ten years.

Treated CHB/CHC cases by NHI Program in Taiwan:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HBV</td>
<td>3,186</td>
<td>6,416</td>
<td>6,309</td>
<td>6,229</td>
<td>6,669</td>
<td>7,947</td>
<td>11,031</td>
<td>21,023</td>
<td>18,713</td>
<td>13,855</td>
</tr>
<tr>
<td>HCV</td>
<td>1,490</td>
<td>3,738</td>
<td>3,575</td>
<td>3,147</td>
<td>3,917</td>
<td>3,592</td>
<td>5,560</td>
<td>12,248</td>
<td>10,597</td>
<td>7,706</td>
</tr>
<tr>
<td>HBV (Resistant)</td>
<td>0</td>
<td><3</td>
<td><3</td>
<td>941</td>
<td>1,722</td>
<td>1,246</td>
<td>1,206</td>
<td>1,207</td>
<td>900</td>
<td>569</td>
</tr>
<tr>
<td>HBV (re-treated)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><3</td>
<td>140</td>
<td>616</td>
<td>1,517</td>
<td>2,006</td>
<td>1,230</td>
<td>1,217</td>
</tr>
<tr>
<td>HCV(re-treated)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>339</td>
<td>1,053</td>
<td>873</td>
<td>706</td>
<td></td>
</tr>
<tr>
<td>HBV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><3</td>
<td>251</td>
<td>152</td>
<td>125</td>
</tr>
</tbody>
</table>
The declining order of CLD and LC ranking among the ten leading causes of death in Taiwan

![Graph showing the declining order of CLD and LC ranking among the ten leading causes of death in Taiwan. The x-axis represents the years from 2001 to 2012, and the y-axis represents the ranking from 5th to 10th. The graph shows that CLD and LC have moved from 5th to 10th over these years.]
HBV and HCV co-infection: A forgotten population

Outline

• Dual chronic HCV/HBV infection
 – Epidemiology
 – Clinical significance

• Strategy to manage patients with dual HCV/HBV

• Using peg-IFN/RBV therapy to treat patients with dual HCV/HBV and active HCV infection
 – Short-term serologic and virologic responses
 – Long-term impact on clinical outcomes

• Unresolved issues

• Conclusions
Outline

• Dual chronic HCV/HBV infection
 – Epidemiology
 – Clinical significance
• Strategy to manage patients with dual HCV/HBV
• Using peg-IFN/RBV therapy to treat patients with dual HCV/HBV and active HCV infection
 – Short-term serologic and virologic responses
 – Long-term impact on clinical outcomes
• Unresolved issues
• Conclusions
Estimated prevalence of HBV–HCV co-infection in South-East Asia

- Worldwide, 350–400 million people worldwide with chronic HBV and an estimated 130–210 million people have chronic HCV\(^1,2\)
 - HBV–HCV co-infection is prevalent in areas where HBV is endemic, such as South-East Asia\(^3\)

HBV–HCV co-infection is frequently found in high-risk populations

Long-term outcomes:
Acute HCV superinfection vs. active CHB
(Hospital-based, case control study)

<table>
<thead>
<tr>
<th>Case No.</th>
<th>HCV on HBV</th>
<th>HBV alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>LC</td>
<td>20 (31.3%)</td>
<td>11 (17.2%)</td>
</tr>
<tr>
<td>HCC</td>
<td>6 (9.4%)</td>
<td>3 (4.7%)</td>
</tr>
</tbody>
</table>

Liaw YF et al, Gastroenterology 2004
HBV–HCV co-infected patients are at increased risk of HCC: a community-based cohort

HCC risk is significantly higher in HBV–HCV co-infected patients than in those with mono infection ($P = 0.030$ and 0.0019, respectively).

<table>
<thead>
<tr>
<th></th>
<th>HBsAg-ve Anti-HCV-ve</th>
<th>HBsAg+ve Anti-HCV-ve</th>
<th>HBsAg-ve Anti-HCV+ve</th>
<th>HBsAg+ve Anti-HCV+ve</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>22.35 (16.05–31.13)</td>
<td>164.98 (122.36–222.46)</td>
<td>492.62 (372.31–651.79)</td>
<td>875.28 (518.38–1,477.90)</td>
<td>0.001</td>
</tr>
<tr>
<td>Men</td>
<td>40.26 (31.12–52.07)</td>
<td>593.31 (518.58–678.80)</td>
<td>683.99 (513.91–910.36)</td>
<td>1,130.75 (721.25–1,772.76)</td>
<td>0.039</td>
</tr>
</tbody>
</table>

HCC = hepatocellular carcinoma; HBsAg = hepatitis B surface antigen.

A ten-year follow-up of patients with dual chronic hepatitis B and C: Outcomes and determinants

<table>
<thead>
<tr>
<th></th>
<th>HBV Monoinfection</th>
<th>HBV/HCV coinfection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. (%) of patients</td>
<td>No. (%) of patients</td>
</tr>
<tr>
<td>Number of case</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>48 (43.2)</td>
<td>48 (43.2)</td>
</tr>
<tr>
<td>Male</td>
<td>63 (56.8)</td>
<td>63 (56.8)</td>
</tr>
<tr>
<td>Age Mean±SD (range)</td>
<td>48.0±12.0 (27.5,75.8)</td>
<td>47.9±12.3 (20.6,75.8)</td>
</tr>
<tr>
<td>Serum ALT level (U/L) Mean±SD (range)</td>
<td>27.5±32.8 (5,281)</td>
<td>109.9±158.0 (12,960)</td>
</tr>
<tr>
<td>Serum Log10 HBV DNA level (IU/mL) Mean±SD (range)</td>
<td>2.5±1.5 (1.2,8.6)</td>
<td>2.7±1.2 (0.3,8.1)</td>
</tr>
<tr>
<td>HBsAg level (IU/mL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤100</td>
<td>44 (39.6)</td>
<td>43 (38.7)</td>
</tr>
<tr>
<td>101-1,000</td>
<td>31 (27.9)</td>
<td>32 (28.8)</td>
</tr>
<tr>
<td>1,001-10,000</td>
<td>33 (29.7)</td>
<td>33 (29.7)</td>
</tr>
<tr>
<td>>10,000</td>
<td>3 (2.7)</td>
<td>3 (2.7)</td>
</tr>
<tr>
<td>HBsAg loss</td>
<td>1491.4</td>
<td>1068.8</td>
</tr>
<tr>
<td>Patient-years of follow-up</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Liu CJ et al (AASLD 2014)
Cumulative incidence of HBsAg seroclearance, HCC and cirrhosis in cases with HBV/HCV co-infection and matched controls with HBV mono-infection

<table>
<thead>
<tr>
<th></th>
<th>HBV and HCV co-infection (N=111)</th>
<th>HBV mono-infection (N=111)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg seroclearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-years of follow-up</td>
<td>1174.55</td>
<td>1557.37</td>
</tr>
<tr>
<td>No of case</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Incidence rate per 100 P-ys (95% CI)</td>
<td>1.70 (1.10-2.64)</td>
<td>1.35 (0.88-2.07)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-years of follow-up</td>
<td>1255.78</td>
<td>1703.65</td>
</tr>
<tr>
<td>No of case</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Incidence rate per 100 P-ys (95% CI)</td>
<td>1.51 (0.97-2.37)</td>
<td>0.47 (0.23-0.94)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirrhosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-years of follow-up</td>
<td>1137.91</td>
<td>1599.00</td>
</tr>
<tr>
<td>No of case</td>
<td>31</td>
<td>16</td>
</tr>
<tr>
<td>Incidence rate per 100 P-ys (95% CI)</td>
<td>2.72 (1.92-3.87)</td>
<td>1.00 (0.61-1.63)</td>
</tr>
</tbody>
</table>
Outcomes of HBV/HCV versus HBV (1): Adjusted for HBV DNA, HBsAg and ALT

Liu CJ et al (AASLD 2014)
Outcomes of HBV/HCV versus HBV (2): Adjusted for HBV DNA, HBsAg and ALT

Liu CJ et al (AASLD 2014)
Outline

• Dual chronic HCV/HBV infection
 – Epidemiology
 – Clinical significance

• Strategy to manage patients with dual HCV/HBV

• Using peg-IFN/RBV therapy to treat patients with dual HCV/HBV and active HCV infection
 – Short-term serologic and virologic responses
 – Long-term impact on clinical outcomes

• Unresolved issues

• Conclusions
Treatment of Dual Infection

Ideal target: Both viruses

Alternative strategy, targeting

Dominant one for hepatitis activity

One most easily be treated
Profiles of HCV and HBV in Patients with Dual Infection

- Active HCV / Inactive HBV: 48%
- Active HCV / Active HBV: 23%
- Inactive HCV / Active HBV: 14.5%
- Inactive HCV / Inactive HBV: 14.5%

Raimondo G et al, Hepatology 2006
Viral Phenotype of Dual HCV/HBV (NTUH, n=139)

Liu CJ et al, (unpublished)
HCV/HBV Dual Infection

• HCV is the priority target
• Practical goals for treatment
 – Eradicate HCV
 – Control HBV (ideally to eradicate)
Peg-IFNα-2a + ribavirin in patients with HCV/HBV or HCV alone: study design

*1000 mg/day if body weight < 75 kg; 1200 mg/day if body weight ≥ 75 kg.
Peg-IFN = pegylated interferon; RBV = ribavirin.
Similar SVR rates in Asian HBV–HCV co-infected and HCV mono-infected patients

Intention-to-treat population.
SVR = sustained virological response.
Peginterferon alfa-2a + ribavirin in patients with HCV/HBV or HCV alone – Follow-up

HCV-infected patients (N=160)

- HCV GT1
 - PEGASYS (180 µg/week)+ RBV (1000–1200 mg/day)* (N=110)

- HCV GT 2 or 3
 - PEGASYS (180 µg/week)+ RBV (800 mg/day) (N=50)

Coinfected HCV/HBV patients (N=161)

- HCV GT 1/HBV
 - PEGASYS (180 µg/week)+ RBV (1000–1200 mg/day)* (N=97)

- HCV GT 2 or 3/HBV
 - PEGASYS (180 µg/week)+ RBV (800 mg/day) (N=64)

5-year post-treatment FU:
-HCV SVR (long-term)

*1000 mg/day if body weight <75 kg
1200 mg/day if body weight ≥75 kg

Liu CJ et al, EASL 2012
Yu ML, et al. Hepatology
HCV SVR is durable in HCV mono-infected patients as well as HBV–HCV co-infected patients

Intention-to-treat population.
SVR = sustained virological response.

HBsAg clearance at end-of-treatment and at 6 months post-Peg-IFN/RBV

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>HCV genotype 1 /HBV</th>
<th>HCV genotype 2/3 /HBV</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>End-of-treatment</td>
<td>19/161 (11.8%)</td>
<td>14/97 (14.4%)</td>
<td>5/64 (7.8%)</td>
<td>0.203</td>
</tr>
<tr>
<td>Follow-up at 6 months</td>
<td>18/161 (11.2%)</td>
<td>12/97 (12.4%)</td>
<td>6/64 (9.4%)</td>
<td>0.555</td>
</tr>
</tbody>
</table>

Seroconversion to anti-HBs noted in 8 of the 18 cases (44.4%) at 6 months follow-up

Around 30% of patients have cleared HBsAg 5 years after treatment with Peg-IFN alfa-2a/RBV

Curative option of serum HBsAg level ≤ 20 IU/mL at baseline for HBsAg clearance 6 months post-treatment

Baseline HBsAg level predicts HBsAg clearance at 6 months post-treatment

Cut-off of serum HBsAg level ≤ 20 IU/mL at baseline for HBsAg clearance 6 months post-treatment

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.2%</td>
<td>85.7%</td>
<td>84%</td>
<td>41.4%</td>
<td>97.8%</td>
</tr>
</tbody>
</table>

The HBsAg clearance rate among the 30 patients with baseline serum HBsAg ≤ 20 IU/mL (40%, n = 12) was significantly greater than among the 90 patients with baseline serum HBsAg >20 IU/mL (2.2%, n=2; P <0.05)

NPV = negative predictive value; PPV = positive predictive value.

Characteristics of 9 patients developing HCC post-trial follow-up

• At baseline
 – 8 (88.9%) pts had dual HCV/HBV, 1 (11.1%) had mono-HCV
 – 5 (55.6%) had cirrhosis, 3 (33.3%) had stage 2 fibrosis, and 1 (11.1%) had stage 1 fibrosis

• After treatment
 – 7 obtained HCV SVR-LTFU, 7 had biochemical remission and 3 developed seroclearance of HBsAg

• Median (range) of time from end of treatment to diagnosis of HCC: 3 yrs (1~5 yrs)

Yu ML et al. Hepatology 2013
Anti-HCV treatment reduces co-infected patients’ risk of HCC and improves survival

A population-based, retrospective cohort study examined the risk of HCC, mortality and adverse events in 1,096 treated and 18,988 untreated HCV–HBV co-infected patients.

<table>
<thead>
<tr>
<th>All-cause mortality</th>
<th>Liver-related mortality</th>
<th>Incidence of HCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>95% CI</td>
<td>P value</td>
</tr>
<tr>
<td>Peg-IFNα + RBV</td>
<td>0.42</td>
<td>(0.34–0.52)</td>
</tr>
</tbody>
</table>

Compared with untreated patients, patients on anti-HCV combination treatment (Peg-IFNα + RBV) have significantly reduced incidences of all-cause mortality, liver-related mortality and HCC.

CI = confidence interval; HR = hazard ratio

Resolved issues about treatment

• Short-term outcomes achieved
 – HCV SVR achieved
 – HBV DNA remains undetectable
 – HBsAg cleared

• Long-term outcomes improved
 – Overall survival
 – Liver-related mortality
 – Development of HCC
Current management guidelines for HBV–HCV co-infection

• It is helpful to determine which virus is dominant in co-infected patients before treatment1
 – HBV DNA levels are often low or undetectable and HCV is usually responsible for the activity of chronic hepatitis in most patients2,3

• In HBV–HCV co-infected patients who are HCV-viremic, antiviral treatment may be selected using the same criteria as for those patients with HCV mono-infection$^{1–3}$

Proposed algorithm for management of HCV and HBV co-infection

HBsAg-positive & anti-HCV-positive

Active HCV / Inactive HBV
- Treat HCV: P+R or DAA-based
- Observe HBV reactivation

Active HCV / Active HBV
- Treat HCV: P+R or DAA-based
- Observe HBV response & reactivation
 - Or
 - Treat HCV & HBV: P+R+NUC

Active HBV / Inactive HCV
- Treat HBV: P or NUC

Inactive HCV / Inactive HBV
- Observation

P: Peg-IFN α
R: ribavirin
NUC: nucleos(t)ide analogue
DAA: Direct acting antiviral (HCV)

Liu CJ. J Gastroenterol Hepatol 2014
Liu CJ and Chen PJ. World J Gastroenterol 2014
Unresolved issues

• Prevention and management of HBV reactivation
• Host and viral factors affecting natural and treatment outcomes of patients with dual chronic HCV/HBV
 – Host: miR-122, IL28B genotype
 – Viral: HCV ISDR, HBV precore/BCP polymorphisms
• Optimal strategies to treat patients with dual HCV/HBV and active HBV infection
• Role of new DAA-based therapy
• Outcomes and mechanisms of occult hepatitis B (OBI) in patients who developed HBsAg seroclearance post-treatment
Relationship of baseline miR-122 level and HBsAg level change in HBV/HCV dually infected patients receiving Peg-IFN/RBV therapy

Cheng HR et al. Hepatol Int (online)
Mechanism of undetectable HBsAg in patients developing occult HBV post-treatment

<table>
<thead>
<tr>
<th>HBV region</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhancer/core promoter:</td>
<td>Grl-2 (A1762T (xK130M))</td>
<td>Grl-4 (C1715G(xT113E))</td>
<td>Grl-8 (A1762T(xK130M))</td>
</tr>
<tr>
<td>Nucleotides 1625-1775</td>
<td>A1764A(xV131I)</td>
<td>A1762T(xK130M)</td>
<td>G1764A(xV131I)</td>
</tr>
<tr>
<td>S2 promoter: nucleotide 2960-3180</td>
<td>C1773T(xV132V)</td>
<td>C1715G(xT113E)</td>
<td>C1764A(xV131I)</td>
</tr>
<tr>
<td></td>
<td>C3050T(preS1T68I)</td>
<td>G1764A(xV131I)</td>
<td>C1764A(xV131I)</td>
</tr>
<tr>
<td></td>
<td>C3109A(preSIV88M)</td>
<td>C1715G(xT113E)</td>
<td>C1764A(xV131I)</td>
</tr>
<tr>
<td></td>
<td>G3157A(preSIV104K)</td>
<td>C1715G(xT113E)</td>
<td>C1764A(xV131I)</td>
</tr>
<tr>
<td></td>
<td>C3050T(preSIT68I)</td>
<td>G1764A(xV131I)</td>
<td>C1764A(xV131I)</td>
</tr>
<tr>
<td>Cytotoxic T lymphocyte:</td>
<td>G285A (sG44E)</td>
<td>C287G (sT45A)</td>
<td>G285A (sG44E)</td>
</tr>
<tr>
<td>a determinant: amino acid 124-147(S gene)</td>
<td>G293A/T294C/</td>
<td>C248G (sL32V)</td>
<td>G285A (sG44E)</td>
</tr>
<tr>
<td>Overlapping polymerase gene:</td>
<td>T531C(sI126T)</td>
<td>G295T (sV47T)</td>
<td>C287G (sT45A)</td>
</tr>
<tr>
<td>amino acid 36-156</td>
<td>T581A(sI143T)</td>
<td>T300C (sL49P)</td>
<td>G293A/T294C/</td>
</tr>
<tr>
<td></td>
<td>G295T (rtV56L)</td>
<td>T265A (sF41Y)</td>
<td>G295T (sV47T)</td>
</tr>
<tr>
<td></td>
<td>T491A(rtI121N)</td>
<td>C248G (sL32V)</td>
<td>G295T (rtV56L)</td>
</tr>
<tr>
<td></td>
<td>T344A(rtL72Q)</td>
<td>C248G (sL32V)</td>
<td>G295T (rtV56L)</td>
</tr>
</tbody>
</table>

Finding: One mutation, C3050T (preS1T68I), decreased S promoter activity, possibly contributing to HBsAg undetectability.

Prevalence of OBI: 40%

-The effect of C3050T mutation on S promoter activity by reporter assay. Huh-7 cells were transfected with pSP-Luc or pSP-Luc-M (carrying the C3050T mutation).

-The cell lysates were prepared for assessment of luciferase activity.

Cheng HR et al. Liver Int (online)
Summary

• HBV–HCV co-infection is prevalent in some parts of South-East Asia
 – HBV endemic countries
 – High risk populations include IVDUs and HIV patients
• HBV–HCV co-infected patients should be treated with the same criteria as mono-infected HCV patients
 – HCV SVR rates in HBV–HCV co-infected patients are similar to those with HCV mono-infection
• Peg-IFN/RBV therapy may also result in HBV responses
 – Clearance of HBsAg is possible in a significant proportion
• Anti-HCV treatment may improve long-term outcomes
 – Post-treatment follow-up is still recommended
Thank you for your attention